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Non-Linearity Phenomenon



Physical causes of nonlinearity

►Operation under finite power-supply voltages

►Essential non-linear characteristics of electronic 

active components (transistors, diodes, etc.)

►Mismatch of input signal levels to a design

►Mismatch of number of input signals to a design
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Problems caused by nonlinear distortions

►Transmission

Harmonics

Emission Mask spillover

EVM and Image Rejection degradation

Reduce efficiency (by backoff)
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Problems caused by nonlinear distortions

►Reception

Spurii (“signals” show up, even if 

nonexistent at input)

Reduce dynamic range

Reduce sensitivity (desensitization)

Blocking of desired signals
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Harmonic Distortion
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Intermodulation
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Fundamental

Distortion Products

(Spurii)
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Blocking (De-Sensing)
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The presence of 

an adjacent strong 

signal blocks the 

weak signal

All rights reserved



in in 

out out 
Gain 

Reduced

Gain 

Small Signal 

Linear Region 

Saturation

Region 

Compression

9All rights reserved



1 dB compression point

►Definition
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The 1 dB compression point specifies the 
output power of an amplifier at which the 
output signal lags behind the nominal 
output power by 1 dB.



Compression

►Definition of the 1 dB compression point at the amplifier 
input (Pin/1dB) and at the amplifier output (Pout/1dB)
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Compression

►Gain versus output power and definition of the 1 dB 

compression 
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Linear Region
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Saturation Region
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Models of nonlinear blocks and their characterization
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Nonlinearities

►An ideal amplifier
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The connection to the input and output voltage is as follows: 

The voltage transfer function of the linear two-port is as follows: 



Nonlinearities

►In practice
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where  vout(t)  voltage at output of two-port   

vin(t)  voltage at input of two port  

a0 DC component 

a1 gain √G  

an coefficients of the nonlinear 

element of the voltage gain 



Single-tone driving – Harmonics

► If a single sinusoidal signal vin(t) is applied to the input of 
the two port 
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this is referred to as single-tone driving.



Single-tone driving – Harmonics

►Applying the trigonometric identity: 
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Single-tone driving – Harmonics

►Spectrum before and after a nonlinear two-port block:
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Single-tone driving – Harmonics
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Single-tone driving – Harmonics

► The levels of harmonics increase over 

proportionally with their order as the input 

level increases, i.e. 

Changing the input level by A dB 

Changes the nth harmonic level by n · A  dB

All rights reserved 22

Note: This assumes the memory-less modelling applies.



Two-tone driving – Intermodulation

►Two-tone driving applies a signal v(t) into the input of 

the two-port block.

►This signal consists of the sum of two sinusoidal 

harmonic tones.
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Two-tone driving – Intermodulation

► The new frequencies produced may be evaluated using the 

following trigonometric identities: 
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Intermodulation products up to max. 3rd order with two-tone driving 
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Two-tone driving – Input Signals
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Output spectrum of a nonlinear two-port with two-tone driving

for intermodulation products up to max. 3rd order 
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In-Band and Harmonic Band Spectra
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Second and Third Order Intercept Points
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Intermodulation products for V1=V2=V
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Slope of OIP2 and OIP3 vs. Pin [dBm]

►The log-log power plot of IM2 is of slope 2dB/dB

►The log-log power plot of IM3 is of slope 3dB/dB

►The log-log power plot of IMN is of slope NdB/dB
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The third-order intercept and 1 dB compression points
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Fundamental vs. 3rd Order
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OIP3 and OIM3 – Linear Scale
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3rd Order Intermodulation Equations
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OIP3[dBm]=IIP3[dBm]+G[dB]

𝑃𝑖𝑛 𝑑𝐵𝑚 = ∆𝑃3 𝑑𝐵𝑐 + 𝑃𝑜𝑢𝑡3 𝑑𝐵𝑚 − 𝐺[𝑑𝐵]

∆𝑃3 dBc = 𝑃𝑜𝑢𝑡1[dBm]-𝑃𝑜𝑢𝑡3[dBm]=

=2(𝑂𝐼𝑃3[dBm]-𝑃𝑜𝑢𝑡1[dBm])=

=
2

3
(𝑂𝐼𝑃3[dBm]-𝑃𝑜𝑢𝑡3[dBm])



3rd Order Intermodulation Equations (2)
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𝑂𝐼𝑃3[dBm]=𝑃𝑜𝑢𝑡1[dBm]+ 
∆𝑃3 dBc

2

𝑃𝑜𝑢𝑡3[dBm]= 3𝑃𝑖𝑛[dBm]+3G[dB]-2 𝑂𝐼𝑃3[dBm] =

= 3𝑃𝑜𝑢𝑡1[dBm]-2 𝑂𝐼𝑃3[dBm] 



Spurious Free Dynamic Range

►Definition

Maximal to minimal input signal power ratio in dB

Maximal signal such that the 2-Tone IM products 

are at the output noise power level

Minimal signal equals the sensitivity with a 

prescribed SNRout. 

Assume here SNRout=1 (0dB).
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Spurious Free Dynamic Range (cont’d)
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For 3rd order IM Products at the noise level:

If SNRout ≠ 0dB in the sensitivity definition, then:
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Cascade Intercept Point

Assuming incoherent combining of IM products it 

is possible to show that:

All rights reserved 39
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Cascade Intercept Point – Another Form

Assuming incoherent combining of IM products it 

is possible to show that:
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2nd Order IM’s:

3rd Order IM’s:
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Measuring Nonlinear Behavior

Most common measurements: Second level

using a network analyzer and power sweeps

 gain compression

 AM to PM conversion

using a spectrum analyzer + source(s)

 harmonics, particularly second and third

 intermodulation products resulting from two or more RF carriers
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Two Tone Test – Setup
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Third order Spurious Free Dynamic Range, SFRD-3

►Spurious Free Dynamic Range

►Definition

Maximal to minimal input signal power ratio in dB

Maximal signal such that the 2-Tone IM products 
are at the output noise power level

Minimal signal equals the sensitivity with a 
prescribed SNRout. 
Assume here (or if not specified otherwise) 
SNRout=1 (0dB).
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Design Tradeoffs between linearity and Sensitivity Optimization

►Sensitivity Optimization

First stage with high gain

First stage with low NF

►Linearity Optimization

Limit the gain of the first stages

Last stage with high IP
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