COMMTECHknowledge

RF, Microwave & Wireless

All rights reserved

COMMTECH knowledge

Non-Linearity Phenomenon

Physical causes of nonlinearity

Operation under finite power-supply voltages

- Essential non-linear characteristics of electronic active components (transistors, diodes, etc.)
- Mismatch of input signal levels to a design
- Mismatch of number of input signals to a design

Problems caused by nonlinear distortions

- Transmission
 - >Harmonics
 - Emission Mask spillover
 - EVM and Image Rejection degradation
 - >Reduce efficiency (by backoff)

Problems caused by nonlinear distortions

Reception

Spurii ("signals" show up, even if nonexistent at input)

Reduce dynamic range

Reduce sensitivity (desensitization)

Blocking of desired signals

Harmonic Distortion

Intermodulation

COMMTECHknowledge

Blocking (De-Sensing)

Ref 20	0.00 dBm #Atten 40 dB					
Peak Log						
10 dB/	The presence of					
	an adjacent strong signal blocks the					
	weak signal					
V1 W2 S3 S4	- M					
	north a standard a loss a stan and a standard	when the second states when				
FC						
Center	401.0 MHz	Span 10.00 MHz				
#Res BW 10.00 kHz VBW 10.00 kHz Sweep 1.002 s						

Compression

COMMTECH knowledge

1 dB compression point

The 1 dB compression point specifies the output power of an amplifier at which the output signal lags behind the nominal output power by 1 dB.

Compression

Definition of the 1 dB compression point at the amplifier input (Pin/1dB) and at the amplifier output (Pout/1dB)

Compression

Gain versus output power and definition of the 1 dB compression

Output power/dBm

Linear Region

COMMTECHknowledge

Saturation Region

Models of nonlinear blocks and their characterization

MMTEC knowledge

Nonlinearities

An ideal amplifier

$$P_{out}(t) = G_P \cdot P_{in}(t)$$

where $P_{out}(t)$ power at output of twoport $P_{in}(t)$ power at input of twoport G_P power gain of twoport

The connection to the input and output voltage is as follows:

$$P_{in}(t) = \frac{1}{R_{in}} \cdot v_{in}^{2}(t)$$
$$P_{out}(t) = \frac{1}{R_{L}} \cdot v_{out}^{2}(t)$$

The voltage transfer function of the linear two-port is as follows:

$$v_{out}(t) = G_v \cdot v_{in}(t)$$

COMMTECHknowledge

Nonlinearities

In practice

$$v_{out}(t) = \sum_{n=0}^{\infty} a_n \cdot v_{in}^n(t) = a_0 + a_1 \cdot v_{in}(t) + a_2 \cdot v_{in}^2(t) + a_3 \cdot v_{in}^3(t) + \dots$$

where $v_{out}(t)$ voltage at output of two-port

- $v_{in}(t)$ voltage at input of two port
- a₀ DC component
- a_1 gain \sqrt{G}
- a_n coefficients of the nonlinear
 - element of the voltage gain

If a single sinusoidal signal v_{in}(t) is applied to the input of the two port

$$\begin{split} v_{in.}(t) &= \hat{V}_{in} . \sin(2\pi f_{in,1} \cdot t) & \hat{V}_{in} : \text{ peak value of } v_{in}(t) \\ \text{and} & f_{in,1} : \text{ frequency of } v_{in}(t), \\ v_{in.}(t) &= \hat{V}_{in} . \sin(\omega_{in,1} \cdot t) & \omega_{in,1}(t) = 2\pi f_{in,1} \text{ (angular frequency)} \end{split}$$

this is referred to as single-tone driving.

$$v_{out}(t) = a_0 + a_1 \cdot v_{in}(t) + a_2 \cdot v_{in}^2(t) + a_3 \cdot v_{in}^3(t) + \dots =$$

Applying the trigonometric identity:

$$\sin^2(x) = \frac{1}{2}(1 - \cos 2x)$$
 and $\sin^3(x) = \frac{1}{4}(3 \cdot \sin x - \sin 3x)$

 $a_0 + a_1 \cdot \hat{V}_{in}(t) \sin (\omega_{in,1} \cdot t) + a_2 \cdot \hat{V}_{in}^2 \cdot \sin^2(\omega_{in,1} \cdot t) + a_3 \cdot \hat{V}_{in}^3 \cdot \sin^3(\omega_{in,1} \cdot t) + \dots$

$$= a_{0} + a_{1} \cdot \hat{V}_{in}(t) \cdot \sin (\omega_{in,1}t) + 0.5 \cdot a_{2} \cdot \hat{V}_{in}^{2} - 0.5 \cdot a_{2} \cdot \hat{V}_{in}^{2} \cdot \cos(2\omega_{in,1}t) + 0.75 \cdot a_{3} \cdot \hat{V}_{in}^{3} \cdot \sin \omega_{in,1}t - 0.25 \cdot a_{3} \cdot \hat{V}_{in}^{3} \cdot \sin(3\omega_{in,1}t) \dots$$

$$= a_{0} + 0.5 \cdot a_{2} \cdot \hat{V}_{in}^{2} + (a_{1} \cdot \hat{V}_{in} + 0.75 \cdot a_{3} \cdot \hat{V}_{in}^{3}) \cdot \sin (\omega_{in,1}t) + 0.5 \cdot a_{2} \cdot \hat{V}_{in}^{2} \cdot \cos(2\omega_{in,1}t) - 0.25 \cdot a_{3} \cdot \hat{V}_{in}^{3} \cdot \sin(3\omega_{in,1}t) \dots$$

Spectrum before and after a nonlinear two-port block:

MMTEC knowledge

Mkr1 △ 200.00 MHz Ref 10.00 dBm #Atten 30 dB -44.87 dB									
Peak Log		¢ 1 R							
10									
dB/									
			K	>					
W1 S2 S3 S4							6 A. h	الم وال	
	howenany	Annah Kinalina ANA E	\\\^~dhqL\}^ \\\ \\\	liture the second s	ግ ር ግብ	vygwr, vy	رسی <i>ی در س</i> ر ۲۰۲	and the state	www
		1	2	1	୍ତା	1	41	1	ו ^כ 1
FC									
Center 500.0 MHz Span 1.000 GHz									
#Res BW 30.00 kHz VBW 30.00 kHz Sweep 6.681 s									

- The levels of harmonics increase over proportionally with their order as the input level increases, i.e.
 - Changing the input level by A dB
 - > Changes the n^{th} harmonic level by $n \cdot A dB$

Note: This assumes the memory-less modelling applies.

Two-tone driving – Intermodulation

- Two-tone driving applies a signal v(t) into the input of the two-port block.
- This signal consists of the sum of two sinusoidal harmonic tones.

$$V_{in.}(t) = \hat{V}_{in,1} \cdot \sin(2\pi f_{in,1} \cdot t) + \hat{V}_{in,2} \cdot \sin(2\pi f_{in,2} \cdot t)$$

where $\hat{V}_{in,1,2}$ peak values of the two sinusoidal signals

f_{in,1}, f_{in,2} signal frequencies

$$\omega_1 = 2 \cdot \pi \cdot f_{in,1}$$
 and $\omega_2 = 2 \cdot \pi \cdot f_{in,2}$.

COMMTECH knowledge

Two-tone driving – Intermodulation

The new frequencies produced may be evaluated using the following trigonometric identities:

$$\sin^{2}(x) = \frac{1}{2}(1 - \cos 2x)$$

$$\sin^{2}(x) \cdot \sin(y) = \frac{1}{2}(1 - \cos 2x) \cdot \sin(y)$$

$$\sin^{3}(x) = \frac{1}{4}(3 \cdot \sin x - \sin 3x)$$

$$\cos(2x) \cdot \sin(y) = \frac{1}{2}\sin(2x - y) + \frac{1}{2}\sin(2x + y)$$

$$\sin(x) \cdot \sin(y) = \frac{1}{2}\cos(x - y) - \frac{1}{2}\cos(x + y)$$

Intermodulation products up to max. 3rd order with two-tone driving

$$\begin{aligned} v_{out}(t) &= \frac{1}{2} \cdot a_2 \cdot \left(V_1^2 + V_2^2\right) & \text{DC component} \\ &+ \left(a_1 \cdot V_1 + \frac{3}{4} \cdot a_3 \cdot V_1^3 + \frac{3}{2} \cdot a_3 \cdot V_1 V_2^2\right) \cdot \sin(\alpha_1 \cdot t) & \text{Fundamental (fi} \\ &+ \left(a_1 \cdot V_2 + \frac{3}{4} \cdot a_3 \cdot V_2^3 + \frac{3}{2} \cdot a_3 \cdot V_1^2 V_2\right) \cdot \sin(\alpha_2 \cdot t) \\ &- \frac{1}{2} \cdot a_2 \cdot V_1^2 \cdot \cos(2 \cdot \alpha_1 \cdot t) & \text{Second harmor} \\ &- \frac{1}{2} \cdot a_2 \cdot V_2^2 \cdot \cos(2 \cdot \alpha_2 \cdot t) & \text{Second-order} \\ &- a_2 \cdot V_1 \cdot V_2 \cdot \cos((\alpha_2 - \alpha_1) \cdot t) & \text{Intermodulation} \\ &- \frac{1}{4} \cdot a_3 \cdot V_1^3 \cdot \sin(3 \cdot \alpha_1 \cdot t) & \text{Third harmonic} \\ &- \frac{1}{4} \cdot a_3 \cdot V_1^2 V_2 \cdot \sin((2 \cdot \alpha_1 - \alpha_2) \cdot t) & \text{Third-order} \\ &- \frac{3}{4} \cdot a_3 \cdot V_1^2 V_2 \cdot \sin((2 \cdot \alpha_1 - \alpha_2) \cdot t) & \text{Third-order} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1^2 V_2 \cdot \sin((2 \cdot \alpha_1 + \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((2 \cdot \alpha_2 - \alpha_1) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((2 \cdot \alpha_2 - \alpha_1) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((2 \cdot \alpha_2 - \alpha_1) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((2 \cdot \alpha_2 - \alpha_1) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((2 \cdot \alpha_2 - \alpha_1) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((\alpha_1 + 2 \cdot \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((\alpha_1 + 2 \cdot \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((\alpha_1 + 2 \cdot \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((\alpha_1 + 2 \cdot \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((\alpha_1 + 2 \cdot \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((\alpha_1 + 2 \cdot \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((\alpha_1 + 2 \cdot \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((\alpha_1 + 2 \cdot \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((\alpha_1 + 2 \cdot \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2^2 \cdot \sin((\alpha_1 + 2 \cdot \alpha_2) \cdot t) & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2 \cdot \sin(\alpha_1 + 2 \cdot \alpha_2) \cdot t & \text{Intermodulation} \\ &+ \frac{3}{4} \cdot a_3 \cdot V_1 V_2 \cdot \sin(\alpha_1 + 2 \cdot \alpha_2) \cdot t & \text{Intermodulation} \\ &+ \frac{3}{4$$

first harmonic)

- nic
- n products
- 0

n products

Two-tone driving – Input Signals

All rights reserved

COMMTECH*knowledge*

Output spectrum of a nonlinear two-port with two-tone driving for intermodulation products up to max. 3rd order

In-Band and Harmonic Band Spectra

Second and Third Order Intercept Points

Intermodulation products for $V_1 = V_2 = V$

$$\begin{split} \mathbf{v}_{out}(t) &= a_2 \cdot V^2 & \text{DC component} \\ &+ (a_1 \cdot V + \frac{3}{4} \cdot a_3 \cdot V^3 + \frac{3}{2} \cdot a_3 \cdot V^3) \cdot \sin(\omega_1 \cdot t) & \text{Fundamental (first harmonic)} \\ &+ (a_1 \cdot V + \frac{3}{4} \cdot a_3 \cdot V^3 + \frac{3}{2} \cdot a_3 \cdot V^3) \cdot \sin(\omega_2 \cdot t) & \text{Fundamental (first harmonic)} \\ &- \frac{1}{2} \cdot a_2 \cdot V^2 \cdot \cos(2 \cdot \omega_1 \cdot t) & \text{Second harmonic} \\ &- \frac{1}{2} \cdot a_2 \cdot V^2 \cdot \cos(2 \cdot \omega_2 \cdot t) & \text{Second-order} \\ &- a_2 \cdot V^2 \cdot \cos((\omega_2 - \omega_1) \cdot t) & \text{Second-order} \\ &- a_2 \cdot V^2 \cdot \cos((\omega_2 + \omega_1) \cdot t) & \text{Intermodulation products} \\ &- \frac{1}{4} \cdot a_3 \cdot V^3 \cdot \sin(3 \cdot \omega_2 \cdot t) & \text{Third-order} \\ &- \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((2 \cdot \omega_1 - \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((2 \cdot \omega_1 - \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((2 \cdot \omega_2 - \omega_1) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((\omega_1 + 2 \cdot \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((\omega_1 + 2 \cdot \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((\omega_1 + 2 \cdot \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((\omega_1 + 2 \cdot \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((\omega_1 + 2 \cdot \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((\omega_1 + 2 \cdot \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((\omega_1 + 2 \cdot \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((\omega_1 + 2 \cdot \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((\omega_1 + 2 \cdot \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot a_3 \cdot V^3 \cdot \sin((\omega_1 + 2 \cdot \omega_2) \cdot t) & \text{Intermodulation products} \\ &+ \frac{3}{4} \cdot u_3 \cdot V^3 \cdot u_3 \cdot u_$$

ic

products

products

Slope of OIP2 and OIP3 vs. Pin [dBm]

- The log-log power plot of IM₂ is of slope 2dB/dB
- The log-log power plot of IM₃ is of slope 3dB/dB
- The log-log power plot of IM_N is of slope NdB/dB

The third-order intercept and 1 dB compression points

COMMTECHknowledge

Fundamental vs. 3rd Order

1dB power increase of (each) input signals pair => output 3rd order product increase of 3dB

COMMTECH knowledge

OIP3 and OIM3 – Linear Scale

At IP₃:
$$\frac{a_1^2 A^2}{2} = \frac{9}{4} a_3^2 \left(\frac{A^2}{2}\right)^3$$

thus $\left(\frac{A^2}{2}\right)_{IP_3} = \frac{2}{3} \left|\frac{a_1}{a_3}\right|$.
 $\left(P_{out1}\right)_{IP_3} = \frac{2}{3} \left|\frac{a_1^3}{a_3}\right| = OIP_3$.
Also $IM_{out3} = \frac{9}{4} a_3^2 P_{in}^3 = \left(\frac{3}{2} a_3\right)^2 P_{in}^3 =$
 $= \left(\frac{3}{2} \frac{a_3}{a_1^3}\right)^2 a_1^6 P_{in}^3 = G^3 \frac{1}{OIP_3^2} P_{in}^3$

COMMTECHknowledge

3rd Order Intermodulation Equations

 $OIP_3[dBm] = IIP_3[dBm] + G[dB]$

 $P_{in}[dBm] = \Delta P_3[dBc] + Pout_3[dBm] - G[dB]$

 $\Delta P_3[dBc] = P_{out1}[dBm] - P_{out3}[dBm] =$

 $=2(OIP_3[dBm]-P_{out1}[dBm])=$

$$=\frac{2}{3}(OIP_3[dBm]-P_{out3}[dBm])$$

3rd Order Intermodulation Equations (2)

$$OIP_{3}[dBm] = P_{out1}[dBm] + \frac{\Delta P_{3}[dBc]}{2}$$

P_{out3} [dBm]= $3P_{in}$ [dBm]+3G[dB]- $2OIP_3$ [dBm] =

$= 3P_{out1}$ [dBm]-2 OIP_3 [dBm]

Spurious Free Dynamic Range

Definition

Maximal to minimal input signal power ratio in dB

- Maximal signal such that the 2-Tone IM products are at the output noise power level
- Minimal signal equals the sensitivity with a prescribed SNR_{out}.

Assume here SNR_{out}=1 (0dB).

Spurious Free Dynamic Range (cont'd)

$$\Delta P_3[dBc] = \frac{2}{3}(OIP_3[dBm] - P_{out3}[dBm])$$

For 3rd order IM Products at the noise level:

$$DR = \frac{2}{3} [OIP_3 - 10\log(kT_{in}BF_rG)][dB]$$

If SNR_{out} \neq 0dB in the sensitivity definition, then:

$$DR = \frac{2}{3} [OIP_3 - 10\log(kT_{in}BF_rG(\frac{S}{N})_{out})][dB]$$

Cascade Intercept Point

Assuming incoherent combining of IM products it is possible to show that:

2nd Order IM's:

$$\frac{1}{OIP_2^{sys}} = \frac{1}{G_2 \dots G_N \cdot OIP_2^{(1)}} + \frac{1}{G_3 \dots G_N \cdot OIP_2^{(2)}} + \dots + \frac{1}{G_N \cdot OIP_2^{(N-1)}} + \frac{1}{OIP_2^{(N)}}$$

3rd Order IM's:

$$\frac{1}{(OIP_3^{sys})^2} = \frac{1}{(G_2 \dots G_N \cdot OIP_3^{(1)})^2} + \frac{1}{(G_3 \dots G_N \cdot OIP_3^{(2)})^2} + \dots + \frac{1}{(G_N \cdot OIP_3^{(N-1)})^2} + \frac{1}{(OIP_3^{(N)})^2}$$

COMMTECH knowledge

Cascade Intercept Point – Another Form

Assuming incoherent combining of IM products it is possible to show that:

2nd Order IM's:

3rd Order IM's:

$$\frac{1}{(OIP_3^{sys})^2} = \frac{(G_T)^2}{(G_1 OIP_3^{(1)})^2} + \frac{(G_T)^2}{(G_1 G_2 OIP_3^{(2)})^2} + \dots + \frac{(G_T)^2}{(G_T OIP_3^{(N)})^2}$$

Measuring Nonlinear Behavior

Most common measurements: Second level

using a network analyzer and power sweeps

- gain compression
- AM to PM conversion
- > using a spectrum analyzer + source(s)
 - harmonics, particularly second and third
 - intermodulation products resulting from two or more RF carriers

Two Tone Test – Setup

Third order Spurious Free Dynamic Range, SFRD-3

- Spurious Free Dynamic Range
- Definition
 - > Maximal to minimal input signal power ratio in dB
 - Maximal signal such that the 2-Tone IM products are at the output noise power level

Minimal signal equals the sensitivity with a prescribed SNR_{out}. Assume here (or if not specified otherwise) SNR_{out}=1 (0dB). Design Tradeoffs between linearity and Sensitivity Optimization

- Sensitivity Optimization
 - First stage with high gain
 - First stage with low NF

- Linearity Optimization
 - Limit the gain of the first stages
 - Last stage with high IP